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Abstract
In this work, we verify the influence of the topology in Einstein–Podolsky–
Rosen (EPR) correlations in the spacetime of a cosmic string. We show by
means of a Wigner rotation that the presence of this topological defect breaks the
spin anti-correlations of the EPR pairs. We also show that a perfect correlation
can be obtained if we take into account the relativistic effect arising from the
acceleration and the spacetime topology.

PACS numbers: 03.65.Ud, 03.67.−a, 04.20.−q, 02.40.−k

1. Introduction

Over the past 70 years of the remarkable Einstein, Podolsky and Rosen (EPR) paper [1],
the study of non-locality and entanglement in quantum mechanics ranges from purely
philosophical problems to quantum cryptography [2, 3], computation and teleportation [4].
In 1964, Bell [5], by means of his theorem on reality and locality, showed that nature indeed
seems to be non-local as far as non-relativistic quantum mechanics is concerned. In this
context, the EPR-correlated states are now widely accepted as a vital resource on quantum
information, such as quantum cryptography and quantum computation.

The question of non-locality still remains to be answered in other arenas, like in
relativistic dynamics. In this way, the analysis of the EPR correlations in several relativistic
physical situations is quite interesting in order to obtain the complete description of quantum
communication in the relativistic regime.

In recent years, a numbers of papers [6–16] analyzed the relativistic effects in quantum
information, such as a discussion of how the entanglement is affected by the Lorentz
transformations in the regime of special relativity. Due to the importance of the subject,
these works inspire the study of EPR anti-correlations in the point of view of general relativity.
In this context, the pioneer work is due to von Borzeszkwski and Mensky [17] who have
investigated the EPR paradox using the parallel transport matrix. Recently, several articles have
investigated the influence of curved backgrounds in quantum information and computation
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[18–22]. Terashima and Ueda [20, 23] studied the influence of a gravitational field on the
properties of the EPR-correlated states by means of general relativity. In particular, they
studied the EPR correlations for a spin in an orbit around a Schwarzschild black hole. They
concluded that acceleration and gravity deteriorate the perfect anti-correlation of the EPR
pairs of spin in the same direction and, apparently, decrease the degree of violation of Bell’s
inequality. They also claimed that the perfect anti-correlation of the spin singlet state in the
EPR correlation is maintained by an appropriate choice of the spin-measurement directions
depending on the velocity of the particle, the curvature of the spacetime and the position of
the observers. In recent articles [24, 25], a series of experiments were proposed using space
infrastructure with specific emphasis on the satellite-based distribution of entangled photon
pairs. The authors of [24, 25] argued that these experiments can be used concerning special
and general relativistic effects on the quantum entanglement.

In this paper, we are interested in the influence of the topology in EPR correlations. We
will analyze the spacetime of a topological defect, particularly a cosmic string. The geometry
of a cosmic string is characterized by a conical singularity in the origin of the coordinate
system. Thus, we can affirm that the spacetime of a cosmic string is locally, but not globally,
flat. This appears due to the presence of a singularity in the origin. Because of the simplicity
of this model, we use it to analyze the influence of topology in a EPR gedankenexperiment.

This paper is organized in the following form. In section 2, we will make a brief exposition
on cosmic string properties. In section 3 we present a mathematical formulation for a spin-1/2
particle, in the context of EPR correlations, in the presence of a gravitational field, and we
study the precession of a spin using the rotation of Wigner. Finally, in section 4 we present
the concluding remarks.

2. Cosmic string spacetime

Cosmic strings are linear defects produced in the early universe due to the symmetry breaking
phase transitions, involved in the process of cooling of the universe. It is well known that the
spacetime produced by a thin, infinite, straight cosmic string has no Newtonian potential [26]
and cannot induce curvature (locally the curvature vanishes everywhere except at the source).
However, there are some global non-trivial topological effects associated with this spacetime
which can be measured [27]. This geometry also presents quantum effects, which have been
studied, either in the context of simple cones or in the context of cosmic string [27].

The simplest form of representing a cosmic string is by an infinite straight line. Because
of its simplicity, this model presents a high degree of symmetry. The line element of a cosmic
string is given by

ds2 = −c2 dt2 + dρ2 + dz2 + α2ρ2 dϕ2, (1)

where α is called the deficit angle and is defined as α = 1 − 4µG/c2 where µ is the linear mass
density of the cosmic string. The azimuthal angle varies in the interval: 0 � ϕ < 2π . The
deficit angle can assume only values in which α < 1 (for a disclination [28, 29], it can assume
values greater than 1, which correspond to an anti-conical spacetime with negative curvature).
This geometry possesses a conical singularity represented by the following curvature tensor:

Rρ,ϕ
ρ,ϕ = 1 − α

4Gα
δ2(�r), (2)

where δ2(�r) is the two-dimensional delta function. This behavior of the curvature tensor
is denominated conical singularity [30]. The conical singularity gives rise to the curvature
concentrated on the cosmic string axis. In all other places, the curvature is null.
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It is well known from quantum field theory in curved spaces that the particle state is not
defined uniquely, since the time coordinate to define a positive energy is not unique. This
question emerges from the concept of particle creation in processes such as Hawking radiation.
In general, in a curved spacetime a global time-like Killing vector field does not exist; therefore
the direct association of a particle with a state of the quantum field is meaningless. However,
if a local Killing vector can be defined in some region of this space, this allows us to find an
interpretation for particles in this space. This question does not bring any problems for the
case studied here because the geometry of the cosmic string is locally flat [31, 32] but not
globally.

3. EPR correlations in a cosmic string background

Now, we return our attention to the main objective of this paper which is the investigation
of EPR correlations in the cosmic string background. The aim of this paper is to investigate
the influence of the topology in the EPR correlations. The topological defect contributes to
change the topology of spacetime. The cosmic string spacetime has some characteristics of
Minkowski spacetime since this spacetime is locally flat, but the conical singularity in ρ = 0
changes the topology of Minkowski spacetime. The study of relativistic and non-relativistic
quantum dynamics in the presence of topological defects produces a series of interesting
quantum effects; as an example, we can cite the gravitational Aharonov–Bohm effect.

We consider that there are two observers and an EPR source on the z plane, where their
positions are given by the azimuthal angles ϕ = ±� and ϕ = 0, respectively. We assume
that they are static in the coordinate system (t, ρ, z, ϕ) at rest. First, the EPR source emits a
pair of entangled particles in opposite directions. The 4-momentum of each particle is given,
respectively, by

pa
±(x) = (mc cosh ξ, 0, 0,±mc sinh ξ), (3)

where the state that describes this system can be written as

|ψ〉 = 1√
2

{∣∣pa
+(x),↑; x〉∣∣pa

−(x),↓; x〉 − ∣∣pa
+(x),↓; x〉∣∣pa

−(x),↑; x〉}. (4)

Our aim is to localize two observers in two points of spacetime to measure the behavior
of the state (4) when the cosmic string is present. To make this, we consider that the particles
move to a new point x̄µ = xµ + Uµ(x) dτ of spacetime, with Uµ(x) being the 4-velocity and
τ the proper time of the particles. Thus, at this new point, the 4-momentum of the particles
varies at each local referential frame and its expression is given by

pa(x̄) = pa(x) + δpa(x). (5)

The variation δpa(x) originates in the dependence of the 4-velocity in relation to the point
where the particle is located. The local reference frame of each particle is defined by the
components of the non-coordinate basis ea = ea

µ(x) dxµ. The components ea
µ(x) are called

tetrads and are defined by

gµν(x) = ea
µ(x)eb

ν(x)ηab, (6)

with the Greek and Latin indices running over µ, ν, . . . = t, ρ, z, ϕ and a, b, . . . = 0, 1, 2, 3,
and the tensor ηab = diag(−1, 1, 1, 1) is the Minkowski metric. The tetrads satisfy the
relations

ea
µ(x)e

µ

b (x) = δa
b , eµ

a (x)ea
ν (x) = δµ

ν . (7)

When we perform a local Lorentz transformation in the tetrad field, we have the following
transformation rule:

ea
µ(x) −→ ēa

µ(x) = �a
b(x)ea

µ(x), (8)
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where �a
b(x) is a Lorentz matrix. Hence, the variation in the 4-momentum is made by the

application of successive infinitesimal Lorentz transformations at each local referential frame
of the particles and provides the formation of the Wigner rotation. The Wigner rotation allows
us to observe the behavior of spins in the state given in (4) because the Wigner rotation is
made in the reference frame in which particles are at rest. The result of Wigner rotation on
the spins is a precession on its direction of measurement in the local reference frame of the
particle at rest in relation to its initial configuration. The state of the particles (4) under a local
Lorentz transformation �a

b(x) is

U(�(x))|pa(x), σ ; x〉 =
∑
σ ′

D
1/2
σ ′σ (W(x))|�pa(x), σ ′; x〉, (9)

with σ being the spins of the particles and the Wigner rotation given by Wa
b (x) ≡

Wa
b (�(x), p(x)). In this way, the variation δpa(x) can be given as

δpa(x) = δpµ(x)ea
µ(x) + pµ(x)δea

µ(x). (10)

The effective change in the momentum is δpµ(x) = maµ(x) dτ , with aµ(x) being the 4-
acceleration of the particles and the variation in the local reference frame is δea

µ(x) =
−Uν(x)ωa

νb(x)eb
µ(x) dτ .

Now, we need to define the local reference frame and the motion of the particle in the
cosmic string background if we want to observe the evolution of the state (4) in this background.
Hence, with the line element given in expression (1), we choose our local reference frame
through the 1-form dual basis as

e0 = c dt, (11a)

e1 = dρ, (11b)

e2 = dz, (11c)

e3 = αρ dϕ, (11d)

where ea = ea
µ dxµ and dxµ = (c dt, dρ, dz, dϕ). Note that we choose the t-axis parallel to

the 0-axis, the ρ-axis parallel to the 1-axis, the z-axis parallel to the 2-axis and finally the
ϕ-axis parallel to the 3-axis. With these assumptions we also observe that these fields are static
since their components do not depend on time, so the tetrad field in the matrix form becomes

ea
µ(x) =

⎛
⎜⎜⎝

c 0 0 0
0 1 0 0
0 0 1 0
0 0 0 αρ

⎞
⎟⎟⎠ . (12)

The spin of the particles must be defined at each point of curved spacetime and
represents the symmetry of the local reference frame. Thus, with the variation of the local
reference frame, we have that the spin connection coefficients are given by the expression
ωa

µb(x) = ea
ν (x)∇µeν

b(x), and its non-null components in the cosmic string spacetime are

ω3
ϕ1(x) = −ω1

ϕ3(x) = α. (13)

From now on, we will analyze the dynamics of the particle. We again consider that the
particle is in a circular movement of radius ρ. In this case, the metric of the cosmic string is
restricted to

ds2 = −c2 dt2 + α2ρ2 dϕ2. (14)
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So we have dxµ = (c dt, 0, 0, dϕ). We can write the proper time of each particle as

dτ = αρ

v

(
1 − v2

c2

) 1
2

dϕ, (15)

with v ≡ αρ
dϕ

dt
being the circular velocity of the particle. So the components of the 4-velocity

Uµ(x) will be

Ut(x) = c√
1 − v2

c2

= c cosh ξ, Uϕ(x) = v

αρ

1√
1 − v2

c2

= c

αρ
sinh ξ, (16)

where we write the ratio v/c in terms of the rapidity parameter as v
c

= tanh ξ . Hence, the
change of the local inertial referential (4) becomes

δe3
µ(x) = − c

ρ
sinh ξe1

µ(x) dτ, δe1
µ(x) = c

ρ
sinh ξe3

µ(x) dτ, (17)

which consists in a rotation around the 2-axis in the local reference frame.
This kind of movement produces a 4-acceleration that can be attributed to any external

force which keeps the particles in the circular trajectory. In the configuration above, there is
only one non-null component of the 4-acceleration aµ(x) = Uν(x)∇νU

µ(x):

aρ(x) = −c2

ρ
sinh2 ξ. (18)

So, the change in the particles’ 4-momentum leads to a new direction in the movement of
the particles. The momentum in the local inertial referential will obey the rules of the local
Lorentz transformation [23]:

�a
b(x) = δa

b + λa
b(x) dτ, (19)

where

λa
b(x) = −1

mc2
{aa(x)pb(x) − pa(x)ab(x)} − Uν(x)ωa

νb(x). (20)

Following this, we can find the non-null components of λ0
1(x). This is given by

λ0
1(x) = λ1

0(x) = −c

ρ
cosh ξ sinh2 ξ, (21)

which represents a boost along the 1-axis. The other components represent a rotation along
the 2-axis:

λ3
1(x) = −λ1

3(x) = c

ρ
sinh ξ cosh2 ξ. (22)

The spin precession is given in accordance with the Wigner rotation. For the infinitesimal
local Lorentz transformations, the Wigner rotation is given by

Wa
b (x) = δa

b + ϑa
b (x) dτ, (23)

where ϑ0
0 (x) = ϑ0

i (x) = ϑi
0(x) = 0 and

ϑi
k(x) = λi

k(x) +
λi

0(x)pk(x) − λk0(x)pi(x)

p0(x) + mc
. (24)

In the presence of the cosmic string, the non-null components of ϑa
b (x) are

ϑ1
3 (x) = c

ρ
sinh ξ cosh ξ. (25)

At this moment we localize the observers in the rest reference frame of the particles at the
position ϕ = ±� and taking a time τ = αρ�/c sinh ξ , each particle reaches the respective
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observer and the Wigner rotation, derived from (23) by a continuous succession of infinitesimal
transformations, becomes a rotation around the 2-axis [23]:

Wa
b (±�, 0) =

⎛
⎜⎜⎝

1 0 0 0
0 cos θ 0 ± sin θ

0 0 1 0
0 ∓ sin θ 0 cos θ

⎞
⎟⎟⎠ . (26)

By iterating the infinitesimal transformations for a finite proper time, the Wigner rotation
becomes

Wa
b (xf , xi) = T exp

{∫ τf

τi

ϑa
b (x(τ )) dτ

}
, (27)

where we suppose that the particle moves along a path xµ(τ) from x
µ

i = xµ(τi) to x
µ

f = xµ(τf )

and T is the time-ordering operator. This expression for the Wigner rotation gives the change
of the spin when the particle is displaced in a curved background, where we can write this
rotation as

Wa
b (±�, 0) = exp

∫
ϑa

b (±�) dτ = exp ϑa
b (±�)τ. (28)

The rotation matrix ϑa
b (±�) is

ϑa
b (±�) =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 k

0 0 0 0
0 −k 0 0

⎞
⎟⎟⎠ , (29)

where k = c
ρ

sinh ξ cosh ξ . Let us use the definition of the exponential form of a matrix in
equation (28):

Wa
b (±�, 0) = 1 + ϑa

b (±�)τ + 1
2

(
ϑa

b (±�)τ
)2

+ 1
3!

(
ϑa

b (±�)τ
)3

+ · · · . (30)

Reorganizing the odd and even power terms, we rewrite the Wigner function as

Wa
b (±�, 0) = δa

b + {cos(kτ ) − 1}ϑa
b (±�)2 + sin(kτ )ϑa

b (±�). (31)

Therefore, the angle of the Wigner rotation in expression (31) with τ = αρ

c
�

sinh ξ
will be

θ = α� cosh ξ. (32)

In order to get only the influence of the relativistic effects on the spin precession spin,
we must remove the spurious effects coming from trivial rotations. These spurious effects
provoked by trivial rotations are eliminated through a rotation in the basis ϕ = ±� around
the 2-axis in the inertial local referential by an angle ∓�, as done in [23]. Hence, the final
state will not have the influence of the spurious effect:

Û (�(±�))|ψ〉 = 1√
2

{
cos �

(∣∣pa
+,↑;�

〉′∣∣pa
−,↓;−�

〉′ − ∣∣pa
+,↓;�

〉′∣∣pa
−,↑;−�

〉′)

+ sin �
(∣∣pa

+,↑;�
〉′∣∣pa

−,↑;−�
〉′

+
∣∣pa

+,↓;�
〉′∣∣pa

−,↓;−�
〉′)}

. (33)

Therefore, the angle of the Wigner rotation, when the spurious effect of the angle � is removed,
will be

� = θ − �

= �{α cosh ξ − 1}. (34)

We note that the cosmic string topology and the particle accelerations influence the break of
the anti-correlations of the spins. The spin anti-correlations are given by the position of the
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observers, as well as by the acceleration and by the topology of the spacetime. We point out
that there is an apparent breaking in the non-local correlations in the case of measurements of
the spin in the rest frame of the observer, on the 3-axis, for instance. It is an apparent breaking.
Therefore, the observers can turn their apparatus of measure to an angle ∓θ around the 2-axis
of their local inertial referential and again recover the perfect anti-correlation of spins.

Now we consider two special limits. The first case is the accelerated movement in the
Minkowski spacetime α = 1. In this case, we obtain the following expression:

{
ϑ3

1 (x) − χ3
1 (x)

}
dτ = −

{
c

ρ
(cosh ξ − 1) sinh ξ

}
dτ.

In the non-relativistic limit v/c � 1, we have

{
ϑ3

1 (x) − χ3
1 (x)

}
dτ ≈ −1

2

v2

c2
dφ. (35)

The difference between the angles ϑ3
1 (x) − χ3

1 (x) gives rise to the Thomas precession as
pointed out by Terashima and Ueda [23]. The second case is the limit where α = 1 and
non-relativistic case v/c � 1, yielding

� = �α

{
1

2

v2

c2
+

(
α − 1

α

)}
. (36)

In this limit, we obtain the contribution of the acceleration due to the topological defect in
a sum of two terms. In the case where α = 1, we observe that the effect of the rotation is
provided solely by the acceleration term. Note that the term due to the topology of space
contributes to increase the angle � if α > 1 and decrease it if α < 1. The cosmic string
geometry parameter 0 < α < 1. The case where α > 1 is the anti-cone case.

4. Conclusion

In this paper, we investigate the EPR correlations in the spacetime with a topological defect.
We note that the presence of the cosmic string apparently breaks the spin anti-correlations
of the EPR pairs. Observing the result (34), we see that the presence of the cosmic string
deteriorates the perfect anti-correlation in the same direction of the initial configuration, in
the local reference frame of the observers, as was pointed by Terashima and Ueda [23]. Note
that in the case where the parameter α = 1 in equation (34), we have the Minkowski limit.
In this case, the apparent deterioration of the EPR correlation is due to the acceleration of the
particles. Analyzing the presence of the cosmic string, the parameter α contributes to decrease
the angle of the spin precession in relation to the Minkowski case because this parameter
assumes only values in the range 0 < α < 1. In the anti-cone case, the spin precession
angle increases due to the fact that α > 1. The perfect correlation can be obtained if we take
into account the relativistic effect arising from acceleration and topology of the spacetime
in order to correct the direction of the spin axis of measurements. We can explore perfect
anti-correlation for quantum communication by rotating the direction of measurement in such
a way as to compensate the direction of measurement at ±� by a rotation about the 2-axis
through the angles ∓θ . It is important to stress that our results differ from those obtained by
Terashima and Ueda. While their results come from the curvature of the spacetime, ours are
of a topological origin, since locally the cosmic string curvature vanishes everywhere, except
in the origin.
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